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ABSTRACT 
 
 Recently, it has been shown that chaos can be 
synthesized by the linear superposition of certain pulse 
basis functions. Here, we extend this result and show that 
a linear, second-order filter driven by a random signal can 
generate a waveform that is chaotic under time reversal. 
That is, the waveform exhibits determinism and a positive 
Lyapunov exponent when viewed backward in time. We 
demonstrate the filter using a passive electronic circuit, 
and the resulting waveform exhibits a Lorenz-like 
butterfly structure. This method for generating chaotic 
waveforms may be useful for a number of potential 
applications, including spread-spectrum communication 
and ultra-wideband (UWB) radar and ladar. The filter also 
demonstrates that chaos may be connected to physical 
theories beyond those described by a deterministic 
nonlinear dynamical system.  
 
 

1. INTRODUCTION 
 

 Chaotic waveforms have been suggested for a 
number of applications, including spread-spectrum 
communication and ultra-wideband (UWB) radar and 
ladar. For these applications, one usually assumes a 
nonlinear dynamical system is required to generate the 
chaotic waveform. However, it has recently been shown 
that chaos can also be constructed by linear superposition 
of special basis pulses [Hayes, 2003, 2005; Hirata and 
Judd, 2005; Corron et al., 2006]. This surprising result 
implies that chaos can also be formally generated using a 
linear filter. However, such linear synthesis of chaos does 
not appear to be practical for a physical system. The pulse 
basis functions contain an infinitely long, exponentially 
increasing oscillation that culminates in a large central 
pulse and monotonic exponential decay. Thus, the exact 
filter is necessarily acausal and impractical to realize. 
 In this paper, we exploit the fact that the basis pulses 
do not need to be acausal when viewed in reverse time 
and develop a very simple system for generating chaotic 
waveforms. In particular, we find that a linear, second-
order filter driven by a random bipolar signal can generate 
a waveform that is chaotic in reverse time. We call such 
dynamics reverse-time chaos. That is, when viewed 
backward in time, the waveform exhibits the essential 
qualities of a chaotic waveform, including determinism 

and a positive Lyapunov exponent. We implement the 
filter in an electronic circuit using only a few passive 
linear components, and we obtain a waveform that 
exhibits a Lorenz-like butterfly structure [Lorenz, 1963]. 
 From previous work, it is known that a linear filter 
can increase the apparent dimensionality of a chaotic 
signal [Badii et al., 1988]. But here we show that a linear 
filter driven by a random process produces a waveform 
that appears to have been produced by a low-dimensional 
chaotic system. This phenomenon suggests that chaos 
may be connected to physical theories whose underlying 
framework is not that of a traditional deterministic 
nonlinear dynamical system. Furthermore, the simplicity 
of the filter mechanism implies one must allow for the 
possibility of reverse-time chaos occurring naturally. For 
example, efforts to detect determinism from randomness 
in a physical system may require the arrow of time to 
differentiate chaos from linear filtering of noise. Powerful 
algorithms that rely only on geometric analysis of state 
space structures, such as fractal dimension, template 
analysis [Gilmore, 1998], or false nearest neighbors 
[Kennel et al., 1992], may not detect a difference between 
forward and reverse-time chaos. 
 Several potential technology applications exist for 
reverse-time chaos. For communications, symbolic 
dynamics can be encoded directly by modulating the 
polarity of the basis pulses [Hayes et al., 1993]. At the 
receiver, the determinism of reverse-time chaos provides a 
form of intentional inter-symbol interference that can be 
processed using simple predictive filters [Blahut, 1990; 
Hayes, 2005]. For correlation-based UWB ranging using 
chaotic waveforms, we note that reverse-time waveforms 
will work equally well as forward-time chaos [Wu and 
Jaggard, 1999; Myneni et al., 2001; Lin and Liu, 2004a, 
2004b]. Reverse-time chaos may also be relevant to the 
prediction and control of electromagnetic interference in 
circuits driven by radio frequency signals [Carroll, 2003; 
de Moraes and Anlage, 2004]. 
 
 

2. REVERSE-TIME CHAOS 
 
 We first demonstrate the construction of  reverse-time 
chaos using a simple, discrete-time linear filter. This 
overly simple model is still sufficient to illustrate the 
fundamental mechanism underlying the physically 
realizable filter described in the next section. 
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 We begin by considering the shift map 
 1mod21 nn zz =+  (1) 
for an arbitrary initial condition 10 0 <≤ z . It is well 
known that this simple dynamical system is chaotic 
[Hayes, 2005]. If the state zn is written as a binary fraction, 
the map corresponds to a left shift followed by dropping 
the integer bit. For example, the initial condition 
z0 = .11010111, which is known with limited (truncated) 
precision, maps to z1 = .1010111?. The ? indicates a bit of 
new information that was previously unknown due to 
limited knowledge of the initial condition. Subsequent 
iterations continue to reveal new bits of information, and 
this apparent capability for a deterministic map to 
generate new information explains chaos’ extreme 
sensitivity to initial conditions and positive entropy. 
 To describe reverse-time chaos, we consider the 
inverse shift map 
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for an initial condition 10 0 <≤ y , where { }1,0∈nσ  is a 
random sequence. In binary representation, the map (2) 
defines a right shift followed by inserting σn as the new 
most significant bit. For example, the initial condition  
y0 = .11010111 maps to y1 = .?1101011, where the ? 
indicates the new bit of information supplied by σ1. Thus, 
the iterated inverse map acts opposite to chaos by 
absorbing information from a random source. Since 
precise knowledge of the current state defines all prior 
iterates, the output of the map is deterministic when 
viewed in reverse time, and the backward iterates satisfy 
the chaotic shift map (1). Thus the inverse map (2), which 
is effectively a linear filter driven by a random process, 
generates reverse-time chaos. 
 
 

3. CONTINUOUS REVERSE-TIME CHAOS 
 
 To demonstrate reverse-time chaos in a continuous-
time linear filter, we consider the driven second-order 
linear system 
 ( ) ( )tsxxx =+++ 222 βωβ &&&  (3) 
where x(t) is the scalar state, β = ln 2 is the decay rate, 
and ω = 2π is the frequency of the damped oscillations. 
The input signal s(t) is 
 ( ) 1, +<≤⋅= ntnsAts n  (4) 
where each { }1,1 +−∈ns  is random and A is a fixed 
amplitude. Since equation (1) is linear, we set A = 1 
without loss of generality. The homogeneous solution of 
equation (1) is 
 ( ) ( )φπ +⋅= − tCtx t

h 2cos2   (5) 
where C and φ are integration constants. It is easy to show 
that the homogenous solution satisfies  

 ( ) ( )txtx hh 2
11 =+  (6) 

0 2 4 6

0.00

0.02

0.04

ξ  

 

t  
Fig. 1. Unit pulse response. 

 
for all 0≥t ; in fact, requiring a solution that satisfies (6) 
defines the particular values we use here for the system 
parameters β and ω [Corron et al., 2006]. 
 To solve for a particular solution, we consider the 
response of the linear system to excitation by a unit pulse. 
That is, we solve the initial value problem 
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subject to the homogenous initial conditions 
( ) ( ) 000 == ξξ & . We find 

  ( )
( )

( ) ( )

( ) ( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

≥⎥⎦
⎤

⎢⎣
⎡ +

<≤⎥⎦
⎤

⎢⎣
⎡ +−

+
=

−

−

.1,2sin
2

2ln2cos2

10,2sin
2

2ln2cos21

2ln4
1

22
ttt

ttt
t

t

t

π
π

π

π
π

π

π
ξ  (8) 

We extend this solution to negative time by defining 
ξ(t) = 0 for t < 0, and the complete pulse response is 
plotted in Fig. 1. A general solution to equation (3) is then 
found by superposition 

 ( ) ( )∑
∞

−∞=
−=

n
n ntstx ξ . (9) 

Using the unit pulse response (8), we find 
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where the notation [t] indicates the largest integer less 
than or equal to t. 
 We claim the waveform (10) is chaotic when viewed 
in reverse time. This claim can be justified using the 
results of Hirata and Judd, 2005, who derived necessary 
conditions for the basis pulse function to assure the 
superposed dynamics are conjugate to a chaotic shift map. 
Instead, here we directly show that a shift dynamics exists 
in the general solution (10). To this end, we define a 
Poincaré return at integer times t = [t]. The nth return is 
then 
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Fig. 2. Forward (top) and reverse (bottom) time 
waveforms generated by integrating equation (7) 

for the random sequence s(t) shown in gray. 
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(3) using time delay embedding with Δt = 1/3. 

 
Defining the scaled return 

 ( ) ( )
2
1

2
2ln4 22
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yields 
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where 
2

1+
= n

n
s

σ  maps the bipolar symbols 

{ }1,1 +−∈ns  to the bits { }1,0∈nσ . It is easy to verify 
that successive scaled returns (13) satisfy 
 1mod2 1+= nn yy  (14) 
which is a chaotic shift map backward in time that is 
equivalent to equation (2). Consequently, the continuous-
time waveform (10) exhibits chaos in reverse time. We 
note this does not imply that integrating equation (3)  
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Fig. 4. Driven resistor-inductor-capacitor (RLC) 
filter circuit for demonstrating reverse-time chaos. 

backward in time will generate a chaotic waveform. 
Instead, this result implies that the general solution will, 
when viewed in reverse time, exhibit the properties of a 
“chaotic” waveform, namely determinism (the shift map) 
and a positive Lyapunov exponent (β = ln 2). 
 In Fig. 2, we show a solution obtained by integrating 
equation (3) for a random sequence s(t). The top plot 
shows a portion of the driving sequence and waveform in 
forward time. The bottom plot shows the same waveform 
in reverse time. The reverse-time waveform is similar to 
chaotic waveforms produced by the Lorenz system 
[Lorenz, 1963]. In Fig. 3 we show an “attractor” 
constructed using delay embedding of the waveform with 
Δt = 1/3. We note a similarity of the “attractor” in Fig. 3 
with certain projections of the butterfly attractor of the 
Lorenz system. 
 
 

4. ELECTRONIC FILTER CIRCUIT 
 

 Significantly, equation (3) models a number of 
elementary physical systems including, for example, a 
damped linear pendulum or spring-mass system. 
 Here we demonstrate reverse-time chaos using the 
electronic filter shown in Fig. 4. Among the first circuits 
known to students, it is modeled as 

 ( )tvv
dt
dvRC

dt
vdLC in2

2
=++  (15) 

where v(t) is the voltage across the capacitor. The applied 
drive voltage vin(t) is 

 ( ) 1,inin +<≤⋅= n
T
tnsVtv n  (16) 

where Vin is a fixed amplitude, { }1,1 +−∈ns  is a random 
sequence, and T is the fundamental drive period. 
Introducing  a dimensionless time τ = t/T yields 

 ( )τ
ττ

fv
LC
T

d
dv

L
TR

d
vd

=++
2

2

2
 (17) 

where 

 ( ) 1,in
2

+<≤⋅= nns
LC
VT

f n ττ . (18) 

We note that the system (17)-(18) is in the same form as 
system (3)-(4); thus, the circuit can exhibit reverse-time 
chaos for parameters satisfying 
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circuit for the random bipolar drive signal shown 
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 2ln2=
L

TR  (19) 

and 

  ( )22
2

2ln4 += π
LC
T . (20) 

 We implement the circuit shown in Fig. 4 using 
discrete electronic components. We use an inductor with 
L = 7.5 mH and intrinsic series resistance R = 57 Ω. The 
requirements (19) and (20) then give T = 180 μs and 
C = 0.11 μF, respectively. To drive the circuit, we use a 
digital signal processing card (Innovative Integration 
ADC64) hosted in a PC to generate random ±1-V bipolar 
bits at 5.6 kHz. The output waveform v(t) is sampled at 

100 kHz using a 12-bit data acquisition card (Keithley 
DAS-1802). 
 A typical output waveform captured from the filter is 
shown in Fig. 5. The top plot shows the input drive signal 
and output voltage in forward time. The bottom plot 
shows the same output waveform in reverse time. In 
Fig. 6 we show the measured “attractor” constructed by 
delay embedding with Δt = 60 μs. Again, we note the 
similarity of the reverse-time waveform and “attractor” to 
those of the chaotic Lorenz system. 
 
 

5. DETERMINISM AND RANDOMNESS 
 
 The construction of such a simple passive electronic 
filter that generates reverse-time chaos when driven by a 
random signal indicates that such phenomena can easily 
occur in physical systems. Besides allowing possible 
technological applications, this capability impacts our 
view of determinism and randomness in nature. From an 
information point of view, deterministic chaos produces 
information by amplifying microscopic details of the 
initial state that were initially beyond the observer’s 
ability to measure [Shaw, 1980]. Even though the 
unfolding information is new to the observer, the future 
dynamics are completely determined by the present state. 
In this way, chaos beautifully reconciles chance and 
determinism. 
 Reverse-time chaos turns determinism around: the 
present state stores the system’s entire history. The infinite 
sequence of prior random pulses can be reconstituted 
from a perfect knowledge of the present state of the filter. 
This property—that the present state determines the 
past—implies determinism when viewed in reverse time. 
Even though the information used to generate reverse-
time chaos is truly random, this information is 
deterministically mapped to microscopic levels in the 
system state, eventually beyond the reach of any 
observer’s precision. Seeing further into the past requires 
ever greater measurement precision, implying a sensitive 
dependence on initial conditions and a positive Lyapunov 
exponent in reverse time. In this way, the random reverse-
time waveform is entirely consistent with a chaotic, 
deterministic forward-time waveform. 
 
 

6. CONCLUSION 
 
 In this paper, we have shown that a reverse-time 
chaotic waveform can be generated by a linear, second-
order filter driven by a random source. We believe it is 
surprising that chaos in any form can be generated by 
such a remarkably simple system. This alternative method 
for generating broadband chaotic waveforms may be 
useful in a number of potential technological applications 
including spread-spectrum communications, UWB radar 
and ladar, and the prediction and control of 
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electromagnetic interference in radio frequency circuits. 
That the language of deterministic chaos provides a 
meaningful description for signals not generated by a 
nonlinear dynamical system suggests chaos may be more 
fundamental than previously supposed. At the very least, 
the possibility of chaos by such a simple mechanism 
provides a new perspective on the interplay and 
reconciliation of deterministic and random processes in 
nature. 
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